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ABSTRACT

Electrons accelerated by solar flares and observed as type III solar radio bursts are not only a crucial

diagnostic tool for understanding electron transport in the inner heliosphere but also a possible early

indication of potentially hazardous space weather events. The electron beams travelling in the solar

corona and heliosphere along magnetic field lines generate Langmuir waves and quasilinearly relax

towards a plateau in velocity space. The relaxation of the electron beam over the short distance in
contrast to large beam-travel distances observed is often referred to as Sturrok’s dilemma. Here, we

develop a new electron transport model with quasilinear distance/time self-consistently changing in

space and time. The model results in a nonlinear advection-diffusion equation for the electron beam

density with nonlinear diffusion term that inversely proportional to the beam density. The solution
predicts slow super-diffusive (ballistic) spatial expansion of a fast propagating electron beam. The

model also provides the evolution of the spectral energy density of Langmuir waves, which determines

brightness temperature of plasma radiation in solar bursts. The model solution is consistent with the

results of numerical simulation using kinetic equations and can explain some characteristics of type III

solar radio bursts.

1. INTRODUCTION

The signatures of accelerated electrons in solar flares are observed over a wide range of frequencies from low radio

frequencies in the interplanetary space to gamma-ray range at the Sun. Hard X-ray and radio observations provide
the most direct signatures of electron acceleration and propagation in the solar atmosphere and in the interplanetary

space (see, e.g. Lin 1985; Holman et al. 2011; Benz 2017, as reviews). Since the early radio X-ray and in-situ electron

observations (Lin 1974) a close association between X-rays and type III solar radio bursts has been noted (e.g. Lin 1985;

Krucker et al. 2007; Reid et al. 2014) suggesting that the cloud of non-thermal beam electrons travels from the solar

flare site into the interplanetary space. These energetic electrons and associated type III emission could be used for the
forecasting of radiation hazards from solar energetic ion events (Posner 2007). However, the quantitative description

of electron transport responsible for type III bursts is a long-standing challenge. The solar flare electrons propagating

along open magnetic field lines are believed to be responsible for type III solar radio bursts via generation of Langmuir

waves and subsequent conversion of these Langmuir waves into escaping radio emission (Ginzburg & Zhelezniakov
1958). Because the faster electrons overtake the slower ones, the conditions for beam-plasma instability quickly appear

leading to a plateau in velocity space and Langmuir waves generation. The characteristic time of kinetic beam-plasma

instability (quasilinear relaxation) is normally short τq ≈ np/(nbωpe), where ω2
pe = 4πe2np/m is the electron plasma

frequency, nb, np are the electron densities of beam and plasma respectively (Vedenov et al. 1961). The mean free

path for 30 keV electrons is λq = vτq ∼ 100 km (τq ∼ 10−3 s. ) for typical type III beam parameters nb/np ∼ 10−5,
ωpe/2π = 100 MHz, v ∼ 1010 cm/s in the solar corona. Fast quasilinear relaxation produces beam deceleration

(Sturrock 1964, see also (Kaplan & Tsytovich 1973; Muschietti 1990; Karlicky 1997; Yoon et al. 2012; Timofeev et al.

2015; Akbari et al. 2021; Krafft & Savoini 2023)), a problem that has become known as Sturrock’s dilemma. Indeed,

spacecraft observations show solar flare energetic electrons are accompanied by type III solar radio bursts (Lin 1970;
Fainberg & Stone 1970). There are two broad approaches to resolve the dilemma: one avenue invokes modification

to quasilinear Langmuir wave generation (e.g. Papadopoulos et al. (1974); Bardwell & Goldman (1976); Sauer et al.

(2019) attributed the solution to Sturrock’s dilemma to nonlinear effects introduced by the oscillating two-stream

instability, stabilization by plasma density inhomogeneities (e.g. Goldman & Dubois 1982; Muschietti et al. 1985),
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cyclic Langmuir collapse (Che et al. 2017)), while the second avenue highlights that electron beam is spatially nonuni-

form, so Langmuir waves would preferentially be generated at the front of the beam and absorbed at the back

(e.g. Zheleznyakov & Zaitsev 1970; Zaitsev et al. 1972; Mel’nik 1995; Mel’nik & Kontar 2000). Numerical solutions

of kinetic equations (Takakura & Shibahashi 1976; Magelssen & Smith 1977; Grognard 1982; Takakura 1982; Kontar
2001a; Hannah et al. 2009; Li et al. 2008; Reid & Kontar 2013; Ratcliffe et al. 2014) broadly support the latter: al-

though quasilinear relaxation flattens the electron distribution, spatial inhomogeneity of the electron beam allows

electrons to propagate large distances. While the time-consuming numerical simulations provide important insights,

analytic theory is essential to relate observable properties of type III bursts and electron beam properties.

One major simplification for the challenge is to utilise the smallness of quasilinear time in comparison to the
characteristic time of the beam and to seek the hydrodynamic description at the timescales larger than the quasilinear

relaxation (e.g. Ryutov & Sagdeev 1970; Mel’nik 1995). This is a good assumption due to the smallness of the

characteristic time of beam-plasma interaction (the quasilinear time, τq) compared to the characteristic time of the

beam t, τq ≪ t. However, due to finite size of the electron beam, the quasilinear time being inversely proportional
to the beam density should change from small (high beam density near beam center) to large (small beam density

away from the beam center) values. Furthermore, the parameter τq/t becomes a function of space and time through

dependency on the beam density.

In the present work we address this theoretical challenge noting that the quasilinear time has to be explicitly treated

as a function of time and space depending on the electron number density of the electron beam. Thus, the relaxation
process is not going to be taking place at the same rate in all points of space. This non-linear description of fast

diffusion naturally leads to a more realistic analytical solutions, comparable to the results of the numerical simulations

shown in the literature.

2. KINETIC DESCRIPTION OF ELECTRONS AND LANGMUIR WAVES

Quasilinear theory describes the propagation of electrons along magnetic field lines in a weakly magnetized

plasma, and the resonant interaction of the electrons with Langmuir waves e.g. ωpe = kv, where ωpe is the lo-

cal plasma frequency, k is the wave number and v is the velocity. The quasilinear equations (Vedenov & Velikhov
1963; Drummond & Pines 1964), provide kinetic description for electrons and Langmuir waves in type III solar

radio bursts. As the electrons follow magnetic field lines, the reduced field-aligned electron distribution function

f(v, x, t) =
∫

f(v)dv⊥ and the spectral energy density of Langmuir waves W (v, x, t) =
∫

W (k)dk⊥ evolve following

the non-linearly coupled kinetic equations:

∂f

∂t
+ v

∂f

∂x
=

4π2e2

m2

∂

∂v

W

v

∂f

∂v
=

∂

∂v
D
∂f

∂v
, (1)

∂W

∂t
=

πωpe

np
v2W

∂f

∂v
, (2)

where
∫

Wdk = U and
∫

fdv = nb are the energy density of Langmuir waves and the number density of the electron
beam. For completeness, we note that the spontaneous terms are not taken into account in the kinetic model (equations

1,2), since the beam-driven level of Langmuir waves is much higher than the spontaneous/thermal one (see discussion

in Lyubchyk et al. 2017). Equation (2) does not include the spatial transfer of the energy by Langmuir waves, since

the group velocity of Langmuir waves is small (vgr ∼ v2Te
/v ≪ v, where vTe

is the electron thermal velocity). The

kinetic equations (1-2) do not have an analytical solution and additional assumptions are required to solve this system
of equations. For completeness, we note that the equations (1,2) are coupled to nonlinear processes responsible for

decay/coalescence of Langmuir waves. The wave-wave interactions are normally treated numerically, see e.g. the

large-scale simulations by Ratcliffe et al. (2014).

3. HYDRODYNAMIC DESCRIPTION

The characteristic time of beam-plasma interaction is normally small τq ≪ t = d/v, where d is the size of an electron

beam. The smallness of quasilinear time allows using hydrodynamic description for beam electrons and Langmuir

waves (Ryutov & Sagdeev 1970; Mel’nik 1995; Mel’nik et al. 1999; Ryutov 2018), so the electron distribution function
f(v, x, t) in the kinetic equations (1,2) is the series in small parameter τqv/d

f = f0 + f1 + ... , (3)



3

which is conceptually similar to the Chapman-Enskog theory of a neutral gas dominated by collisions

(Chapman & Cowling 1970). Unlike the Chapman-Enskog theory, this theory utilises fast beam-plasma interaction

via Langmuir waves. Substituting the expansion (3) into kinetic equations (1,2), we have in 0th-order or the fastest

terms when τqv/d → 0:

0 =
4π2e2

m2

∂

∂v

W 0

v

∂f0

∂v
∝ τ−1

q , (4)

0 =
πωpe

np
v2W 0 ∂f

0

∂v
∝ τ−1

q . (5)

and hence dominant for d/v ≫ τq. This leads to a well-known result that the 0th-order solution is a plateau in the

velocity space since ∂f0/∂v = 0 (e.g. Vedenov et al. 1967)

f0 (v, x, t) =

{

p (x, t) , 0 < v < u(x, t)

0, v ≥ u(x, t)
(6)

and an enhanced level of Langmuir waves, so that the spectral energy density of Langmuir waves becomes

W 0 (v, x, t) =

{

W0 (v, x, t) , 0 < v < u(x, t)

0, v ≥ u(x, t)
(7)

where zero-order terms f0 and W 0 turn the right-hand sides of kinetic equations (1, 2) to zero. In other words,

any initially unstable electron distribution function relaxes to a plateau and Langmuir waves are generated within

quasilinear time ∼ τq. Here p (x, t) is the plateau height and u(x, t) is the maximum electron velocity, so that the

number density of electrons is

n(x, t) =

u(x,t)
∫

0

p (x, t) dv = p (x, t) u(x, t). (8)

Following (Mel’nik et al. 1999), one can find the equations for p(x, t), u(x, t) and W0(v, x, t). Integrating equation (1)
over v from v = 0 to v = u(x, t), one obtains the equation for electron number density n(x, t) = p(x, t)u(x, t)

∂pu

∂t
+

1

2

∂pu2

∂x
=

∂n

∂t
+

1

2

∂nu

∂x
= 0, (9)

which is the hydrodynamic continuity equation or conservation of electrons. Integrating equation (1) over v between

u− ξ and v = u+ ξ, with ξ −→ 0, gives
∂u

∂t
+ u

∂u

∂x
= 0, (10)

while combining equations (1,2) one obtains

∂p

∂t
+ v

∂p

∂x
=

ωpe

m

∂

∂v

1

v3
∂W0

∂t
, (11)

which is the equation for the spectral energy density of Langmuir waves. Equation (11) can be integrated to find a
solution for a initial value problem. Following Mel’nik (1995); Mel’nik et al. (1999), the equations for p(x, t), u(x, t)

and W (v, x, t) can be integrated for given initial conditions. For initial condition

f(v, x, t = 0) = nb exp(−x2/d2)g(v), (12)

where nb is the electron beam density at x = 0, and g(v) = 2v/v20 for v < v0, the solution of equations (9, 10,11) gives

(see (e.g. Kontar 2001b))

u(x, t) = v0 , (13)

p(x, t) =
nb

v0
exp(−(x− v0t/2)

2/d2) , (14)

W0(v, x, t) =
m

ωpe
v4
(

1− v

v0

)

p(x, t) , (15)
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The solution (13-15) suggests a beam-Langmuir-wave structure, i.e. electron beam together with Langmuir waves

propagate with speed v0/2 preserving the initial size d. The equations as well as solution assume that the relaxation

proceeds at the same rate for all x and t, which is evidently not true due to finite spatial size of the electron beam

d. The electron number density is higher near the peak of the beam-plasma structure and decreases away. Therefore,
the relaxation of electrons should proceed at different rate τ−1

q ∝ n(x, t) in various spatial locations and one should

take into account the spatial variation of τq due to variation of electron number density n(x, t) of the beam.

4. HYDRODYNAMICS WITH NON-LINEAR DIFFUSION

To address the inhomogeneity of quasilinear time, we retain the f1 term in the expansion of f and substituting (3)
into (1), one finds

∂
(

f0 + f1
)

∂t
+ v

∂
(

f0 + f1
)

∂x
=

∂p

∂t
+ v

∂p

∂x
+

∂f1

∂t
+ v

∂f1

∂x
=

∂

∂v
D
∂f1

∂v
, (16)

where the first order terms are retained. Further, integrating this equation over velocity from 0 to ∞ gives

∂

∂t

v0
∫

0

(

f0 + f1
)

dv +
∂

∂x

v0
∫

0

v
(

f0 + f1
)

dv = D
∂f1

∂v

∣

∣

∣

∣

v0

0

, (17)

where due to the quasilinear relaxation at t ≫ τq, a plateau is considered to be established in the electron distribution

function i.e. f0(v, x, t) = p(x, t) for v < v0. Hence, equation (17) becomes

∂pv0
∂t

+
1

2

∂pv20
∂x

+
∂

∂t

v0
∫

0

f1dv +
∂

∂x

v0
∫

0

vf1dv = 0 , (18)

where
v0
∫

0

f1dv = 0 because
v0
∫

0

(f0+f1)dv = n(x, t). Since the electron number density can be written n(x, t) = p(x, t)v0,

we can write equation (18) as

∂n

∂t
+

v0
2

∂n

∂x
+

∂

∂x

v0
∫

0

vf1dv = 0 , (19)

where f1(v, x, t) is to be found. The procedure to find f1 is similar to the derivation of a spatial diffusion coeffi-

cient from pitch-angle scattering diffusion coefficient (Jokipii 1966; Hasselmann & Wibberenz 1970; Schlickeiser 1989).

Multiplying equation (16) by v0 and subtracting equation (19) one finds

(

v − v0
2

) ∂n

∂x
+ v0

∂f1

∂t
+ v0v

∂f1

∂x
− ∂

∂x

v0
∫

0

vf1dV = v0
∂

∂v
D
∂f1

∂v
, (20)

and retaining only zero order terms, one finds equation for f1(v, x, t)

1

v0

(

v − v0
2

) ∂n

∂x
=

∂

∂v
D
∂f1

∂v
, (21)

where the right-hand side is zero order due to fast plateau formation (equation 4). Since the quasilinear relaxation

operates 0 < v < v0, velocity diffusion coefficient D = πω2
pe/(mnp)(W/v) [One can see this explicitly from W0 solution

(15)] should be zero at the boundary velocities, i.e.:

D|v=0 = D|v=v0
= 0. (22)

These boundary conditions allow us to integrate equation (21) over v and obtain

D
∂f1

∂v
=

1

v0

∂n

∂x

v
∫

0

(

v
′ − v0

2

)

dv
′

=
1

v0

∂n

∂x

1

2
v (v − v0) + C1 , (23)
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where C1 = 0 due to D|0 = D|v0 = 0, yielding

∂f1

∂v
=

v (v − v0)

2v0D

∂n

∂x
. (24)

Further, integrating equation (24) over v, we find expression for f1

f1 =
1

2v0

∂n

∂x

v
∫

0

v
′2 − v0v

′

D
dv

′

+ C2 , (25)

where the constant C2 is determined from
v0
∫

0

f1dv = 0, (see Appendix A for details). Therefore, f1 becomes

f1 =
1

2v0

∂n

∂x





v
∫

0

v
′2 − v0v

′

D
dv

′ − 1

v0

v0
∫

0

(v0 − v′)
v′2 − v0v

′

D
dv′



 , (26)

and from equation (A2)
v0
∫

0

vf1dv = − 1

4v0

∂n

∂x

v0
∫

0

v2 (v0 − v)2

D
dv . (27)

Hence, the transport equation for electron number density (equation 19) takes the form

∂n

∂t
+

v0
2

∂n

∂x
= − ∂

∂x

v0
∫

0

vf1dv =
∂

∂x

1

4v0

∂n

∂x

v0
∫

0

v2 (v0 − v)2

D
dv , (28)

which is the modified equation of particle conservation (compare to equation 9).

4.1. Advection and non-linear diffusion

The velocity diffusion coefficient D ∝ W is determined by the level of Langmuir waves. Taking the spectral energy

density of Langmuir waves W 0 given by equation (15), one can write for D:

D = π
ωpe

v0

n(x, t)

np
v3
(

1− v

v0

)

= D0v
3

(

1− v

v0

)

, (29)

where D0 = π
ωpe

v0

n(x,t)
np

. Finally substituting (29) into (28) and integrating from vmin (instead of 0 as in equation 28)

leads us to advection diffusion equation

∂n

∂t
+

v0
2

∂n

∂x
− ∂

∂x
Dxx

∂n

∂x
= 0, (30)

with the non-linear spatial diffusion coefficient given by

Dxx =
1

4v0

v0
∫

vmin

v2 (v0 − v)
2

D
dv =

v20np

4πωpen(x, t)

(

ln
v0
vmin

− 1

)

∝ v20
4
τq . (31)

The spatial diffusion coefficient (31) is dependent on the beam density and is smaller for smaller quasilinear time. In

other words, the stronger the beam (larger nb), the slower the diffusion term (smaller Dxx). The diffusion coefficient

with 1/n(x, t) nonlinearity is often named fast diffusion i.e. diffusion is fast in regions where the density of particles

is low (e.g. Juan R. Esteban & Vázquez 1988a; Vázquez 2017).
An important peculiarity of the solution (31) is that we had to integrate from vmin and when vmin → 0, Dxx → ∞

diverges. The divergence has a physical reason: the plateau down to zero velocity is formed at t → ∞, so the diffusion

coefficient is infinite when vmin → 0. In other words, the spatial diffusion coefficient, Dxx ∝ τq, is infinite due to the

infinite time required to form plateau down to vmin = 0. While the plateau is quickly formed over broad range of
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velocities (over quasilinear time τq), the growth rate of Langmuir waves is actually zero at v = 0, as one can see from

equation (2). Indeed, numerical simulations (e.g. Kontar et al. 1998; Kontar 2001b) show that the relaxation proceeds

down to a small but finite velocity. In plasma with a Maxwellian distribution of thermal particles, the plateau is also

formed between maximum beam velocity and thermal distribution, so that vmin ≃ 3 − 4vTe
(e.g. Kontar & Pécseli

2002; Ziebell et al. 2008, 2011; Sauer et al. 2019).

Therefore, in order to compare our analytical model to the results of the numerical simulations or observations, we

include a constant lower bound vmin to the plateau in velocity, resulting in the new electron distribution function

f0 (v, x, t) =

{

p (x, t) , vmin < v < u(x, t)

0, v ≤ vmin, v ≥ u(x, t)
(32)

and the spectral energy density of Langmuir waves

W 0 (v, x, t) =

{

W0 (v, x, t) , vmin < v < u(x, t)

0, v ≤ vmin, v ≥ u(x, t)
(33)

where the solution for u(x, t), p(x, t), and W0(x, v, t) can be found following Kontar et al. (1998) to be

u(x, t) = v0, (34)

p(x, t) =
nb

v0 − vmin
exp

[

− (x− (v0 + vmin) t/2)
2

d2

]

, (35)

W0 (v, x, t) =
m

ωpe
v3 (v − vmin)

(

1− v + vmin

v0 + vmin

)

p(x, t), (36)

The obvious difference from the solution (13-15) is that the solution (34-36) accounts for the minimum velocity of a

plateau. Another consequence of vmin is that electron density is now given by

n(x, t) =

v0
∫

vmin

p (x, t) dv = p (x, t) (v0 − vmin) , (37)

with a new diffusion equation

∂n

∂t
+

v0 + vmin

2

∂n

∂x
+

∂

∂x

v0
∫

vmin

vf1dv = 0 . (38)

After finding f1 (see Appendix (B)), we arrive to

v0
∫

vmin

vf1dv = − 1

4(v0 − vmin)

∂n

∂x

v0
∫

vmin

(v − vmin)
2 (v0 − v)

2

D
dv . (39)

Similarly to the previous subsection, the expression for D can be found from the formula for the spectral energy

density W0(x, v, t) and the plateau height p(x, t). From Kontar et al. (1998), we have that in case of non-zero vmin

D = D0v
2 (v − vmin)

(

1− v + vmin

v0 + vmin

)

, (40)

where now D0 = π
ωpe

(v0−vmin )
n(x,t)
np

.

If we insert this D into equation (39), we obtain (see Appendix B)

v0
∫

vmin

vf1dv = −v0 + vmin

4D0

(

v0 + vmin

v0 − vmin
ln

v0
vmin

− 2

)

∂n

∂x
, (41)

and our advection-nonlinear-diffusion becomes

∂n

∂t
+

(v0 + vmin)

2

∂n

∂x
− ∂

∂x
Dxx

∂n

∂x
= 0, (42)
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where our new diffusion coefficient Dxx that includes vmin is now given by

Dxx =
v20 − v2min

4πωpe

np

n(x, t)

((

v0 + vmin

v0 − vmin

)

ln
v0
vmin

− 2

)

=
v20 − v2min

4π
τq

((

v0 + vmin

v0 − vmin

)

ln
v0
vmin

− 2

)

. (43)

The spatial diffusion coefficient Dxx is inversely proportional to electron number density n(x, t) or is proportional to

quasilinear time, so the spatial diffusion is faster for longer quasilinear time np/(ωpen(x, t)). The diffusion coefficient

Dxx is zero when vmin = v0, i.e. spatial diffusion is not possible without quasilinear relaxation. The electron beam

diffusion coefficient (equation 43) is also dependent on vmin, so the spatial expansion of electron beam is larger for
smaller vmin.

5. ASYMPTOTIC SOLUTION TO ADVECTION-NONLINEAR-DIFFUSION EQUATION

Let us consider the evolution of an electron beam given by initial condition

n(x, t = 0) = nbδ (x/d) , (44)

where nb is the electron beam density and d is the characteristic size. The advection-nonlinear diffusion equation (42)

with n(x, t) normalised with nb can be rewritten

∂n

∂t
+

v0 + vmin

2

∂n

∂x
− ∂

∂x
D0

xx

nb

n

∂n

∂x
= 0 , (45)

where the nonlinear dependency of Dxx on n(x, t) is explicitly highlighted by introducing Dxx = D0
xx

nb

n . The equation

(45) can be solved for constant v0 and vmin to find asymptotic solution

n(x, t) =

(

(x− (v0 + vmin)t/2)
2

2D0
xxnbt

+
2π2

nbd2
D0

xxt

)−1

=

=
nb

π

2πD0
xxt/d

2

(x− (v0 + vmin)t/2)2/d2 + 4π2(D0
xxt)

2/d4
,

(46)

which is a Lorentzian

L(x′) =
1

π

γ

x′2 + γ2
, (47)

where x′ = (x−(v0+vmin)t/2)/d and γ = 2πD0
xxt/d

2. The solution (46) describes the expanding electron beam moving

with the speed (v0 + vmin)/2. The electron beam size given by γ is proportional to time t, and for t → 0, n(x, t) →
nbdδ(x), which is the initial condition (44). The electron density equation (45) without advection term has been studied
for different applications (e.g. Lonngren & Hirose 1976; Berryman & Holland 1982; Juan R. Esteban & Vázquez 1988b;

Hill & Hill 1993; King 1993; Rosenau 1995; Pedron et al. 2005) and the asymptotic profiles are often referred as ZKB

profiles [from Zeldovich, Kompanyeets and Barenblat (see Barenblatt 1996, as a review)]. n(x, t) given by (46) also

conserves the number of particles
∫ +∞

−∞
n(x, t)dx = dnb as expected.

The solution (46) shows that the electron beam always expands with time or with distance, so the peak of the beam
at x = (v0 + vmin)t/2 decreases following:

n

(

x, t =
2x

v0 + vmin

)

=
nbd

π

(v0 + vmin)d

4πxD0
xx

∝ d

x
, (48)

which is an important result for the theory of type III bursts. The plausible decrease of electron number density with

distance 1/x would be preferable to explain the intensity of type III burst with distance observed in the interplanetary

space (e.g. Krupar et al. 2014).
Another interesting consequence of the solution (46) is that the beam size is growing with time or distance. Full

Width at Half Maximum (FWHM) of the electron beam ∆x is

∆x = 2γd =
4π

d
D0

xxt =
4π

d
D0

xx

2x

(v0 + vmin)
∝ τq

x

d
, (49)
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or dividing by the average speed of the electron beam (v0 + vmin)/2, one obtains the time FWHM of the beam

∆t =
4γd

v0 + vmin
=

4π

d
D0

xx

2t

(v0 + vmin)
=

4π

d
D0

xx

4x

(v0 + vmin)2
∝ τq

x

d
, (50)

where the spatial expansion of the beam ∆x is linearly growing with time ∆x ∝ t or the particle propagate ballistically,
which is the special case of super-diffusion. Constant spatial diffusion coeficient leads to ∆x ∝ t1/2, but the non-linear

diffusion Dxx ∝ 1/n(x, t) due to Langmuir wave turbulence make electron beam to expand ”faster”, i.e. ∆x ∝ t

which is so-called super-diffusion (e.g. Okubo et al. 1984; Treumann 1997; Zimbardo et al. 2006). Here, the Langmuir

turbulence is self-consistently generated as the electron beam propagates and expands in space. The level of Langmuir
turbulence is proportional to the number of particles that gives the nonlinearity of the diffusion coefficient.

5.1. Initially finite beam dynamics

To compare with observations and numerical simulations, let us consider initial electron number density function as

a Gaussian with characteristic size d, which is similar to the initial condition in (Kontar et al. 1998), i.e. the electron

distribution function at t = 0 is

f(v, x, t = 0) =
2nb

v0

v

v0
exp

(

−x2

d2

)

, 0 < v < v0 , (51)

hence the number density of beam electrons

n(x, t = 0) = nb exp
(

−x2/d2
)

, (52)

with the total number of particles
∫ +∞

−∞
n(x, t) = nbd

√
π. Then the solution of advection-nonlinear-diffusion equation

(45) is the convolution of the initial condition (52) and Lorentzian from equation (46) normalised to 1, which is the

solution to the Dirac delta function initial condition (the Green’s function solution, which is an approximation when

Dxx is nonlinear, see e.g. Kheifets (1984); Frasca (2008); Frank (2009)):

n(x, t) =
nb

π

∫ ∞

−∞

2πD0
xxt/de

−s2/d2

ds

(x− s− v0+vmin

2 t)2 + 4π2(D0
xxt)

2/d2
=

= nb
γ

π

∫

∞

−∞

e−y2

dy

(η − y)2 + γ2
= nbV (γ(t), η(x, t)),

(53)

where η(x, t) = (x− (v0 + vmin)t/2)/d, γ(t) = 2πD0
xxt/d

2, y = s/d, and

V (γ, η) ≡ γ

π

∫ ∞

−∞

e−y2

dy

γ2 + (η − y)2
, (54)

is the Voigt profile (Abramowitz & Stegun 1970), which is the convolution of Gaussian and Lorentzian, often used to

fit spectral lines (e.g. Jeffrey et al. 2016).
In case of the solution (53), the width of the electron beam is the combination of Lorentzian FWHM given by

equation (49) and the FWHM of the Gaussian (52), which is ∆xG = 2
√
ln 2d ≃ 1.67d. The Voigt profile can be

approximated (Whiting 1968):

∆xV ≈ ∆x/2 +
√

∆x2/4 + ∆x2
G ∼

√

∆x2
G +∆x2 , (55)

which shows that the electron beam of size d is expanding ballistically with time ∆x ∝ t, when ∆x ≫ d. The speed of

the expansion (Equation 49) is controlled by the quasilinear time. Smaller/larger quasilinear time leads to slower/faster

spatial electron beam expansion.
Figure 1 shows the spatial evolution of electron beam for the beam-plasma parameters used in the numerical sim-

ulations by Kontar et al. (1998). Unlike the solution assuming constant quasilinear time (Equation 14), the solution

(Equation 53) is much closer in describing the simulated density profile showing both the decrease of the peak density

and electron beam expansion (Figure 2 in Kontar et al. 1998).
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Figure 1. Electron number density profile n(x, t)/nb for the beam-plasma parameters as in the numerical simulations by
Kontar et al. (1998): nb = 12 cm−3, np = 6×108 cm−3 (i.e. fpe ≃ 220 MHz) and v0 = 1010 cm/s, vmin = 0.1v0, d = 3×109 cm.
The three curves are the density profiles given by the solution (Equation 53) for t = 0.5, 3, 6 seconds.

Using the solution for electron beam spread (53), the spectral energy density of the Langmuir waves (Equation 36)

becomes

W = n(x, t)
m

ωp
v3

v − vmin

v0 − vmin

(

1− v + vmin

v0 + vmin

)

, (56)

so the spectral energy density decreases with distance due to the spatial evolution of n(x, t).
The peak density of electrons n(x, t = 2x/(v0 + vmin)) decreases with distance following

n
(

x, t = 2x
v0+vmin

)

nb
= V

(

γ

(

t =
2x

v0 + vmin

)

, η = 0

)

, (57)

where γ(x, t = 2x/(v0 + vmin)) = 4πD0
xxx/((v0 + vmin)d

2). Figure 2 shows the peak value (Equation 57) as a function

of distance.
The width variation or the time required to pass a specific point in space for a beam would correspond to the

duration of type III burst at a given frequency. Interestingly, type III observations, similar to the predictions of

ballistic expansion (Figure 2), also show expansion (Figure 10 in Reid & Kontar 2018). The detailed comparison

would require taking into account radio-wave propagation. The rate of expansion is dependent on density and can be
a new valuable diagnostic of electron beam density in type III bursts. This is also apparent from Figures 3 and 4,

where the temporal evolution of simulated electron distribution, spectral energy density and electron beam density is

shown for nb = 12 cm−3 and nb = 120 cm−3. The value of vmin was chosen to be the minimum velocity value at half

maximum of the electron distribution. It is evident that higher densities correspond to shorter quasilinear times of

interaction, resulting in a better fit between simulations and the analytical solution.

6. SUMMARY

We develop a quantitative analytical model of the electron transport responsible for type III solar radio bursts.

The developed model takes into account the finite size of electron beam, so the generation of Langmuir waves and
quasilinear relaxation proceeds faster in the regions of higher electron number density. In the limit of small quasilinear

time, the hydrodynamic approach yields the advection-nonlinear-diffusion equation for electron number density. Since

the rate of relaxation of electrons is governed by the beam density at different spatial locations, the non-linear diffusion

coefficient is inversely proportional to the beam density Dxx ∝ 1/n(x, t), process known as fast diffusion. Low electron
beam density away from the peak of the electron beam leads to faster spatial diffusion of electrons.

The model has an elegant analytical solution showing that electron beam propagates at constant speed (v0+vmin)/2

but with varying spatial width. The electron beam spatial size growths with the rate dependent on quasilinear time

τq. The spatial width of the electron beam is proportional to τq and to time t at large x ≫ d. Unlike a linear diffusion
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Figure 2. Top panel: Electron number density profile n(x, t)/nb at t = 0, 20, 40, 60 seconds for the same beam plasma
parameters as in Figure 1 nb = 12 cm−3 in black and nb = 60 cm−3 in red . Bottom panel: FWHM width of the beam given
by equation 55 (solid line). The dashed line is the width of Lorentzian (Equation 49). The horizontal dashed line is Gaussian
FWHM, ∆xG ≃ 1.67d. Black lines are for nb = 12 cm−3 and red lines are for nb = 60 cm−3.

case, when the beam size increases as ∝
√
t, the nonlinear diffusion leads to ballistic (super-diffusion) expansion i.e.

electron beam size is ∝ t at large distances x ≫ d (see lower panel in Figure 2 and equation 49). Although the spatial

expansion is linear with time, the rate of the expansion could be small for small quasilinear times τq or large densities

(compare Figures 4 and 3).

The spatial expansion of the electron beam leads to the decrease of the peak density of the electron beam. For large

x ≫ d, when the expansion is ∝ x, the maximum beam density decreases as ∝ 1/x, with the rate dependent on the
beam density. The spectral energy density of Langmuir waves as the proxy for the type III solar radio flux is also

decreasing ∝ 1/x.

We further note that the spatial distribution of electrons has quantitative agreement with the numerical solutions

of kinetic equations, where both numerical solutions and analytical density profiles show Voigt-like profile (Figure 1).
Similar to the simulations, the peak density of electrons in the beam decreases with distance at the rate similar to the

numerical solution (Figure 2 in Kontar et al. (1998) ). The analytical solution also shows that on top of advection

with constant speed, (v0 + umin)/2, the nonlinear diffusion leads to spatial expansion of electron beam with time. The

FWHM of the electron beam, in the analytical solution is shown to be expanding ballistically, i.e. ∆x ∝ t for ∆x ≫ d.

The expansion of the electron beam is faster further away from the beam center due to larger local quasilinear time
since Dxx ∝ 1/n(x, t) (Equation 49).

In application to type III solar radio bursts, the spectral energy density of plasma emission via Langmuir waves

depends on the beam density and would decrease ∝ 1/x, which is required to explain the radial type III solar burst

flux variations (Krupar et al. 2014). The spatial expansion of the beam is also qualitatively better fit for the time
width of type III bursts (Reid & Kontar 2018). However, more detailed studies including Langmuir wave refraction

are likely to be required to have a detailed comparison with the solar type III burst observations.

EPK support via the STFC/UKRI grants ST/T000422/1 and ST/Y001834/1. FA (studentship 2604774) and EPK

were supported via STFC training grant ST/V506692/1.
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Figure 3. Simulated electron distribution f(x, v, t) (left), spectral energy density W (x, v, t) (center), and electron beam density
n(x, t) (right) at three time moments t = 0.5, 3, 6 s. for the following beam-plasma parameters nb = 12 cm−3, np = 6×108 cm−3

(i.e. fpe ≃ 220 MHz) and v0 = 1010 cm/s, vmin = 0.1v0, d = 3 × 109 cm. The analytical density profile (53) is plotted in red,
with the black dashed line showing its peak as a function of distance.

Figure 4. The same as Figure 3 but for nb = 120 cm−3.

APPENDIX

A. SPATIAL DIFFUSION COEFFICIENT

To determine the constant of integration C2, we note that
∫ v0
0

f1dv = 0, i.e.

∫ v0

0

f1dv = 0 =
[

vf1
]
∣

∣

v0

0
−
∫ v0

0

v
∂f1

∂v
dv ,
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which can be expanded into
1

2v0

∂n

∂x

∫ v0

0

(v0 − v′)
v′2 − v0v

′

D
dv′ + v0C2 = 0 ,

and rearranged to have

C2 = − 1

2v20

∂n

∂x

∫ v0

0

(v0 − v′)
v′2 − v0v

′

D
dv′ . (A1)

Substituting C2 into equation (25), one obtains

f1 =
1

2v0

∂n

∂x

[
∫ v

0

v′2 − v0v
′

D
dv′ − 1

v0

∫ v0

0

(v0 − v′)
v′2 − v0v

′

D
dv′
]

,

and taking into account that
∫ v0

0

vf1dv = 0 =

[

v2

2
f1

]∣

∣

∣

∣

v0

0

−
∫ v0

0

v2

2

∂f1

∂v
dv ,

one finds that

∫ v0

0

vf1dv = − 1

4v0

∂n

∂x

∫ v0

0

v (v − v0)
v2 − v0v

D
dv = − 1

4v0

∂n

∂x

∫ v0

0

v2 (v0 − v)2

D
dv . (A2)

B. SPATIAL DIFFUSION WITH NON-ZERO LOWER PLATEAU VELOCITY

Let us consider the plateau in the electron distribution function and spectral energy density including a constant

lower bound vmin:

f0 (v, x, t) =

{

p (x, t) , vmin < v < u(x, t)

0, v ≤ vmin, v ≥ u(x, t)
(B3)

W 0 (v, x, t) =

{

W0 (v, x, t) , vmin < v < u(x, t)

0, v ≤ vmin, v ≥ u(x, t)
(B4)

Solutions for u(x, t), p(x, t), and W0(x, v, t) can be found following the method used in Kontar et al. (1998) to be

u(x, t) = v0 , (B5)

p(x, t) =
nb

v0 − vmin
exp

[

− (x− (v0 + vmin) t/2)
2

d2

]

, (B6)

W0 (v, x, t) =
m

ωpe
v3 (v − vmin)

(

1− v + vmin

v0 + vmin

)

p(x, t) , (B7)

for the initial conditions on the electron distribution function given by equation (12).
Integrating equation (16) over velocity from vmin to ∞, one obtains

∂n

∂t
+

v0 + vmin

2

∂n

∂x
+

∂

∂x

v0
∫

vmin

vf1dv = 0. (B8)

Multiplying equation (16) by v0 − vmin and subtracting equation (B8) one finds

(

v − v0 + vmin

2

)

∂n

∂x
+ (v0 − vmin)

∂f1

∂t
+ (v0 − vmin)v

∂f1

∂x
− ∂

∂x

v0
∫

vmin

vf1dv = (v0 − vmin)
∂

∂v
D
∂f1

∂v
. (B9)

and retaining only zero order terms

1

v0 − vmin

(

v − v0 + vmin

2

)

∂n

∂x
=

∂

∂v
D
∂f1

∂v
, (B10)
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which is the equation for f1. Integrating equation (B10) over v, one obtains

D
∂f1

∂v
=

1

v0 − vmin

∂n

∂x

v
∫

vmin

(

v
′ − v0 + vmin

2

)

dv
′

=
1

v0 − vmin

∂n

∂x

1

2
(v − vmin) (v − v0) + C1 . (B11)

Since the quasilinear relaxation operates now on vmin < v < v0, we have D|v=vmin
= D|v=v0

= 0. Therefore, C1 = 0,

yielding
∂f1

∂v
=

(v − vmin) (v − v0)

2(v0 − vmin)D

∂n

∂x
, (B12)

and with further integration over v, we find the expression for f1

f1 =
1

2(v0 − vmin)

∂n

∂x

v
∫

vmin

(v
′ − vmin)(v

′ − v0)

D
dv

′

+ C2 , (B13)

where the constant C2 is determined from
v0
∫

vmin

f1dv = 0 =
[

vf1
]∣

∣

v0

vmin

−
v0
∫

vmin

v
∂f1

∂v
dv ,

which can be expanded into

1

2(v0 − vmin)

∂n

∂x

v0
∫

vmin

(v0 − v
′

)
(v

′ − vmin)(v
′ − v0)

D
dv

′

+ (v0 − vmin)C2 = 0.

Hence, the integration constant C2 is found to be

C2 =
1

2(v0 − vmin)2
∂n

∂x

v0
∫

vmin

(v0 − v
′

)2
(v

′ − vmin)

D
dv

′

, (B14)

and f1 can now be written as

f1 =
1

2(v0 − vmin)

∂n

∂x





v
∫

vmin

(v
′ − vmin)(v

′ − v0)

D
dv

′

+
1

v0 − vmin

v0
∫

vmin

(v0 − v′)
2 (v

′ − vmin)

D
dv′



 . (B15)

This allows us to rewrite the integral in the diffusion term of equation (B8) as

v0
∫

vmin

vf1dv =

[

v2

2
f1

]v0

vmin

−
v0
∫

vmin

v2

2

∂f1

∂v
dv = − 1

4(v0 − vmin)

∂n

∂x

v0
∫

vmin

(v − vmin)
2 (v0 − v)

2

D
dv. (B16)

Using the diffusion coefficient in velocity space D from equation (40), we have the spatial diffusion coefficient

Dxx = −
v0
∫

vmin

vf1dv =
1

4(v0 − vmin)

v0
∫

vmin

(v − vmin)
2(v0 − v)2

D(v)
dv (B17)

=
v0 + vmin

4D0(v0 − vmin)

v0
∫

vmin

(v − vmin)(v0 − v)

v2
dv

=
v0 + vmin

4D0(v0 − vmin)

[

(v0 + vmin) ln(v) +
v0vmin

v
− v
]∣

∣

∣

v0

vmin

=
v0 + vmin

4D0

[(

v0 + vmin

v0 − vmin

)

ln

(

v0
vmin

)

− 2

]

,

which is given in the main text by equation (43).
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